The annihilator-inclusion Ideal graph of a commutative ring
Authors
Abstract:
Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected graph with diameter at most three, andhas girth 3 or ∞. Furthermore, we determine all isomorphic classes of non-local Artinian rings whose annihilator-inclusion ideal graphs have genus zero or one.
similar resources
The sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
full textA note on a graph related to the comaximal ideal graph of a commutative ring
The rings considered in this article are commutative with identity which admit at least two maximal ideals. This article is inspired by the work done on the comaximal ideal graph of a commutative ring. Let R be a ring. We associate an undirected graph to R denoted by mathcal{G}(R), whose vertex set is the set of all proper ideals I of R such that Inotsubseteq J(R), where J(R) is...
full textOn the girth of the annihilating-ideal graph of a commutative ring
The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.
full textSome results on a supergraph of the comaximal ideal graph of a commutative ring
Let R be a commutative ring with identity such that R admits at least two maximal ideals. In this article, we associate a graph with R whose vertex set is the set of all proper ideals I of R such that I is not contained in the Jacobson radical of R and distinct vertices I and J are joined by an edge if and only if I and J are not comparable under the inclusion relation. The aim of this article ...
full textthe sum-annihilating essential ideal graph of a commutative ring
let $r$ be a commutative ring with identity. an ideal $i$ of a ring $r$is called an annihilating ideal if there exists $rin rsetminus {0}$ such that $ir=(0)$ and an ideal $i$ of$r$ is called an essential ideal if $i$ has non-zero intersectionwith every other non-zero ideal of $r$. thesum-annihilating essential ideal graph of $r$, denoted by $mathcal{ae}_r$, isa graph whose vertex set is the set...
full texton annihilator graph of a finite commutative ring
the annihilator graph $ag(r)$ of a commutative ring $r$ is a simple undirected graph with the vertex set $z(r)^*$ and two distinct vertices are adjacent if and only if $ann(x) cup ann(y)$ $ neq $ $ann(xy)$. in this paper we give the sufficient condition for a graph $ag(r)$ to be complete. we characterize rings for which $ag(r)$ is a regular graph, we show that $gamma (ag(r))in {1,2}$ and...
full textMy Resources
Journal title
volume 6 issue 2
pages 231- 248
publication date 2021-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023